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Introduction
The finite-analytic method was developed by Chen and co-workers in the early
1980s (Chen et al., 1980) as a technique based on the decomposition of the
computational domain into subdomains or computational cells. The coefficients
of the governing equations were frozen in each subdomain, so that linear partial
differential equations were to be solved in each computational cell subject to
appropriate boundary conditions at the cell’s boundaries. Chen et al. (1980) and
Chen and Chen (1984) approximated the boundary conditions by polynomials
and linear combinations of polynomials and exponentials of the co-ordinate
along each boundary respectively, and employed the method of separation of
variables to obtain the solution in each subdomain. Furthermore, Chen et al.
(1980) and Chen and Chen (1984) related the coefficients in the approximate
boundary conditions to the values of the vorticity at three successive nodes of
any boundary in Cartesian co-ordinates, and truncated the infinite series
solution given by the method of separation of variables to a finite one so that
nine-point stencils resulted. Their method is, therefore, an approximate one
owing to both the use of assumed boundary conditions and the use of frozen
coefficients in the governing equations in each subdomain. 

Suh and Benim (1989) used the finite-analytic method of Chen et al. (1980)
with a primitive variable formulation and a pseudo-compressibility technique
for the pressure, and examined two-dimensional cavity flows in Cartesian co-
ordinates. Note that Chen et al. (1980) and Chen and Chen (1984) considered
cavity flows but employed a stream function-vorticity formulation.

Sun and Militzer (1992) developed a piecewise-parabolic, finite-element
method for two-dimensional advection-diffusion equations based on similar
approximations to those of Chen et al. (1980) and Chen and Chen (1984), i.e. they
employed separation of variables, except that they chose the boundary
conditions in each subdomain in such a manner so as to satisfy the maximum
and minimum principles of the two-dimensional advection-diffusion equation. 

Civan (1995) also employed a finite-analytic technique to solve one- and two-
dimensional, linear problems by employing series solutions rather than by
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linearizing the governing equations as done by, for example, Chen et al. (1980)
and Chen and Chen (1984). 

Montgomery and Fleeter (1996) employed the finite-analytic method of Chen
et al. (1980) and Chen and Chen (1984) to analyse steady, two-dimensional,
inviscid, compressible, subsonic flow in a nozzle, and employed a linearization
method in each subdomain, approximate boundary conditions at the
subdomain’s boundaries, and the method of separation of variables to obtain
continuous, albeit approximate, solutions in the whole computational domain.

The objective of this short communication is three-fold. First, it is shown that
the cell boundary conditions employed by Montgomery and Fleeter (1996) are
not exact. Second, by means of a simple one-dimensional example, it is
illustrated that the finite-analytic method is really a piecewise-parabolic
approximation which involves only three consecutive grid points and, therefore,
it provides continuous but not differentiable solutions. Finally, a finite-analytic
method which employs the exact boundary conditions at the cell boundaries
and provides continuous and differentiable solutions is proposed.

Boundary conditions at the cell boundaries
The boundary function for the yj + 1 boundary (Figure 1) used by Montgomery
and Fleeter (1996) was defined in their equation (13) as

(1)

where 
—Φ satisfies the following partial differential equation

(2)

which may be easily obtained from equations (10) and (11) of Montgomery and
Fleeter (1996). 

Figure 1.
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If equation (2) is assumed to apply at the yj + 1 boundary, then substitution of
equation (1) into equation (2) yields 

(3)

which cannot, in general, be satisfied owing to the dependence of 
—Φ on x along

the yj + 1 boundary. Therefore, the statement “the boundary conditions for the
computational cell shown in Figure 2 are constructed for the particular solution
to (10)” (Montgomery and Fleeter, 1996, p. 63) is incorrect. Furthermore, as
shown above, their equation (13) is actually the solution to

(4)

which may be obtained from equation (2) by approximating C
—Φyy–2BC

—Φy by
2Abj + 1 at the yj + 1 boundary. Furthermore, it must be noted that Chen et al.
(1980) employed second-degree polynomials, whereas Chen and Chen (1984)
employed a linear combination of a first-degree polynomial and an exponential
function to approximate the cell boundary conditions, and neither of these
boundary conditions satisfies the linearized vorticity equation in each
computational cell.

Continuity of the solution
The approximate solution obtained with the finite-analytic method developed
by Chen et al. (1980) is not analytical; it is only continuous. This can be easily
illustrated by means of the following non-linear, second-order, ordinary
differential equation 

(5)

subject to appropriate boundary conditions at x = 0 and x = L, so that the
solution is unique. Equation (5) can be integrated analytically and reduced to a
quadrature. According to the finite-analytic method of Chen et al. (1980), the
interval [0, L] is divided into subintervals and the ith computational cell is
defined as I = [xi–1, xi+1]. For the sake of convenience, hereon, we will assume
that an equally spaced mesh is used. Then, the finite-analytic method applied to
equation (5) yields

(6)

where ξ = (x – xi–1)/(xi+1 – xi–1), h = xi+1 – xi and the superscript (I) denotes the
ith computational cell. Equation (6) represents a parabolic approximation to u in
I and can also be obtained by quadratic interpolation. 

A similar expression to equation (6) can be deduced for the (i + 1)th cell, and
continuity of u(I) at the right boundary of the ith cell yields
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(7)

which is the standard second-order accurate finite difference discretization of
equation (5). Furthermore, differentiation of equation (6) yields

(8)

(9)

which clearly implies that, in general, du(I)/dx (xi+1) ≠ du(I+1)/dx (xi+1). Therefore,
the finite-analytic method of Chen et al. (1980) only provides continuous but not
differentiable solutions, and this is owing to the fact that, for one-dimensional
problems, each computational cell involves three grid points.

When non-equally spaced grids are employed, S(ui) must be replaced by an
appropriate weighted value involving ui+1, ui and ui–1.

A differentiable finite-analytic method
As stated previously, Montgomery and Fleeter (1996) employed some approxi-
mations to the boundary conditions at the cell boundaries which do not satisfy
equation (2) and their method provides a continuous, albeit approximate,
solution. In order to obtain a differentiable finite-analytic method, the boundary
conditions at the cell boundaries must be left unspecified and must be deter-
mined from the continuity of the solution and of its derivative normal to the
cell’s boundaries. This implies that equation (13) of Montgomery and Fleeter
(1996) must be replaced by 

—Φ(x,yj+1) = 
—Φj+1(x) = Fj+1(x) where Fj+1 is to be

determined as part of the solution. Their equations (24) and (28) are valid, but
their equation (25a) is to be replaced by

(10)

where the symbols are defined in Montgomery and Fleeter (1996) and x denotes
local cell co-ordinates whose origin is at the cell centre (Figure 1). 

Since Montgomery and Fleeter (1996) used the method of separation of
variables, the solution to their equation (12) in the cell centred at P can be
written as (cf. their equation (15))

(11)

where, for example, 
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(12)

(xi,yj) denote the co-ordinates of the cell centred at point P and

(13)

Equations (11) and (12) indicate that Φ(P) depends on bin
(P), i = 1,2,3,4.

Furthermore, equation (11) of Montgomery and Fleeter (1996) can be written as 

(14)

which represents the stream function in the Pth cell, and A, B, C and f are the
locally constant coefficients which appear in equation (10) of Montgomery and
Fleeter (1996). 

Equation (14) clearly implies that the stream function in the Pth cell depends
on bin

(P), i = 1, 2, 3, 4. In order to determine these coefficients, we impose the
continuity of Ψ and ∂Ψ/∂n at the cell boundaries where n denotes the outside
normal to the boundary. Thus, for example, at the yj+1 boundary

(15)

(16)

and N denotes the cell adjacent to the north of the P cell.
It is clear from equations (11), (12) and (14) that equations (15) and (16)

depend on x, bin
(P) and bin

(N). These equations may be multiplied by sin[αn(x – xi +
h)] and the results integrated from x = –h to x = h to obtain two linear algebraic
equation of the form (this is actually the condition of orthogonality)

(17)

where, for example, for equation (15)

(18)
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(19)

Note that Montgomery and Fleeter (1996) used local co-ordinates with origin at
the cell centre. Equations (15) and (16) together with those for the P–S, P–E and
P–W interfaces where S, E and W denote the south, east and west respectively,
cells surrounding the P cell, provide eight equations for bin

(k), k = P, E, W, S and
N, i.e. for 20 unknowns if the P, E, W, S and N cells do not have edges where
boundary conditions are specified. Note that, if a P cell has edges which
coincide with the domain boundaries, the number of unknowns in that cell is
four minus the number of edges where the boundary conditions are specified. 

Equation (17) contains series; therefore, it is, in general, impossible to obtain
its analytical solution. However, if the series are truncated and a finite number
of terms are retained, equation (17) may be solved to obtain bin

(k) with n ≤ N where
N is the number of terms retained. This truncation results in an approximate
expression for both Φ(P) and Ψ(P). Furthermore, the values of Ψ(P) at the cell
boundaries may be easily determined once Φ(P) is known through equation (14).
Therefore, the boundary conditions at the cell boundaries do not have to be
specified or approximated as in Montgomery and Fleeter (1996). 

A comparison between the differentiable piecewise finite-analytic method
proposed here and the finite-analytic technique of Chen et al. (1990) and Chen
and Chen (1984) indicates that the former is algebraically more tedious than the
latter; however, the former does not require any approximation to the cell
boundary conditions because these are determined from the solution. Further-
more, both methods yield series (cf. Montgomery and Fleeter, 1996, p. 66). 

An advantage of the differentiable finite-analytic method presented here is
that the solution is differentiable whereas that of the finite analytic method of
Chen et al. (1984) is continuous but not differentiable. The price paid for
differentiability can be easily understood from the tediousness of the method
presented here. Note that the method presented here provides analytical
solutions compared to that of Montgomery and Fleeter (1996) which yields
difference equations because of the cell boundary conditions employed in their
paper (cf. their equation (37)). Note also that the method proposed here does not
have to use the cells considered above; it may also consider only one of the four
cells within each macrocell (Figure 1). 

It should be pointed out that standard difference equations for equation (2)
usually only involve five grid points, where the finite-analytic technique of Chen
et al. (1984) uses nine points and makes it a good candidate for problems with
flows not aligned with the grid, i.e. for crosswind diffusion.

Conclusions
It has been shown that the finite-analytic method provides approximate
continuous but not differentiable solutions and that, for second-order, ordinary
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differential equations, the method is identical to a quadratic interpolation
formula. It has also been shown that the finite-analytic method can be
generalized to obtain differentiable solutions, although this requirement results
in a more tedious and expensive technique. The differentiability of the solution
can be obtained by leaving the boundary conditions at the cell boundaries
unspecified and matching the solutions and their derivatives normal to the
boundaries of adjacent cells. 
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